physics

electromagnetic induction						
changing \vec{B}_{ext} , or changing A,	$\Phi_{\text{ext}B} = \int \vec{B}_{\text{ext}} \bullet d\vec{A}$	changing Φ_{extB}	Faraday's law: $d\Phi$	$\mathcal{E}_{induced}$ "induced voltage"	<i>V=IR</i> ►	<i>I</i> _{induced} "induced current"
or changing θ $\vec{B}_{ext} = "external magnetic field" vector; unit=T$	For a uniform $\operatorname{ext}\vec{B}$: $\Phi_{\operatorname{ext}B} = \operatorname{ext}B_{\perp \operatorname{to surface}} \cdot A$ $= \operatorname{ext}B_{\parallel \operatorname{to} \vec{A}} \cdot A$ $= \operatorname{ext}\vec{B} \cdot \dot{A} \cdot \cos \theta$ \vec{A} is a vector whose magnitude is the surface's area and whose direction is normal to the surface.	magnetic flux from the external	$\mathcal{E}_{induced} = -\frac{d\dot{\Phi}_{extB}}{dt}$ $ \mathcal{E}_{induced} = \frac{d\dot{\Phi}_{extB}}{dt}$ If I_{ind} flows in positive direction, then $\mathcal{E}_{ind} > 0$; if I_{ind} flows in negative direction, then $\mathcal{E}_{ind} < 0$. Faraday's law:	"induced emf"	Dir I_{ind} is determined from Lenz's law:	
		magnetic field"		scalar unit = V = J/C	1. Is Φ_{extB} increasing of decreasing? 2. Lenz's law says that	
		scalar units=V∙s			dir \vec{B}_{ind} opposes the change in Φ_{extB} .	scalar unit=A=C/s
					So, if $\Phi_{\text{ext}B}$ is increasing, then dir \vec{B}_{ind} is opposite to	
					dir ext $\vec{B}_{\perp surface}$; if Φ_{\perp} is decreasing then	
	θ is the angle between ext \vec{B} and \vec{A} .		$\oint \vec{E}_{ind} \bullet d\vec{r} = -\frac{d\Phi_B}{dt}$ Dir \vec{E}_{ind} is direction the	\vec{E}_{ind} "induced	dir \vec{B}_{ind} is the same as	
			current would flow if it existed.	electric field" vector unit = N/C	3. Use the right-hand rule to find dir I_{ind} from dir \vec{B}_{ind} .	
First, get an expression, not a number, for $\Phi_{\text{ext}B}(t)$. Then, determine $\frac{d\dot{\Phi}_{\text{ext}B}(t)}{dt}$. To find $\frac{d\dot{\Phi}_{\text{ext}B}}{dt}$ you will need $\frac{dB_{\text{ext}}}{dt}$, $\frac{dA}{dt}$, or $\frac{d\cos(\theta)}{t}$.						
Changing \vec{B}_{ext} : If given $\frac{dB_{ext}}{dt}$, use it. If given an expression for $B_{ext}(t)$, find $\frac{dB_{ext}(t)}{dt}$.						
If given ΔB_{ext} and Δt with constant $\frac{dB_{\text{ext}}}{dt}$, find $\frac{dB_{\text{ext}}}{dt} = \frac{\Delta B_{\text{ext}}}{\Delta t}$.						
Changing A: $A =$	lw , so $\frac{dA}{dt} = l\frac{dw}{dt} = lv$.	Cha	anging θ : $\theta = \omega t = 2\pi f t$, so	$\int \frac{d\cos(\theta)}{t} = \frac{d}{t}$	$\frac{\cos(2\pi ft)}{t} = -2\pi f \sin(2\pi ft) .$	